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Unsteady heat or mass transport from a particle with an arbitrary shape suspended in
a fluid of infinite expanse is considered in the limit of small Pe! clet numbers where
diffusion is dominant. In a frame of reference in which the particle appears to be
stationary, the velocity of the fluid is uniform or varies in a linear manner with respect
to the spatial coordinates, with an arbitrary time dependence. The temperature or
concentration of a species at the surface of the particle is held at a certain constant
value, whereas that at infinity is held at another constant value. Two particular
problems are considered, both to leading order with respect to the Pe! clet number: (a)
the rate of transport from a particle that is introduced suddenly into a steady flow near
the steady state ; and (b) the average rate of transport from a particle that is suspended
in a time-periodic flow. The theory uses the method of matched asymptotic expansions
and employs the Green’s function of the convection–diffusion equation for a generally
unsteady uniform or linear flow. The Green’s function is derived in closed form by first
performing a transformation to a Lagrangian framework. In the first problem of
transient transport, it is found that the functional form of the rate of transport near
the steady state is affected strongly by the structure of the incident flow: the decay in
uniform or elongational flow is exponential, whereas the decay in simple shear flow is
algebraic. In the second problem of transport in a periodic flow, it is found that the
value of a properly defined frequency parameter has a strong influence on the mean
rate of transport, for all types of flow. The oscillation induces convective mixing and
thereby reduces the mean rate of transport by a substantial factor. The ability of the
theory to describe another situation of heat or mass transport considered by Pedley is
also discussed.

1. Introduction

Consider a small particle with an arbitrary shape, suspended in a quiescent
surrounding fluid of infinite expanse, and assume that the temperature or concentration
of a certain species at the surface of the particle is held at the constant value T

"
, while

the temperature or concentration far from the particle has the lower value T
!
. Heat or

mass is released from the particle surface at a constant rate Q
!
that depends upon the

particle shape alone. The distribution of the temperature or concentration field is
governed by the steady diffusion equation whose linear nature, along with that of the
boundary conditions, allows us to write Q

!
¯ h

!
(T

"
®T

!
), where h

!
is a heat or mass

transfer coefficient. It is convenient to express h
!

in terms of the Nusselt number
Nu

!
¯ h

!
}4πak¯Q

!
}4πak(T

"
®T

!
), where a is half the maximum particle diameter,
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and k is the thermal conductivity or species mass diffusivity. For a spherical particle of
radius a, it is readily found that Nu

!
¯ 1.

When in a frame of reference in which the particle appears to be stationary the
motion of the ambient fluid is steady, the rate of heat or mass transport from the
particle changes by an amount Q®Q

!
that is a function of the structure and intensity

of the incident flow in the vicinity of the particle, as well as of the value of the Pe! clet
number Pe¯ aU}D ; U is the typical magnitude of the velocity of the fluid in the
vicinity of the particle, and D is the thermal or species mass diffusivity. In the case of
heat transfer, D¯k}ρc

p
, where ρ and c

p
are the density and heat capacity of the fluid

at constant pressure, and in the case of mass transfer D¯k. Assuming that neither the
temperature nor concentration field has a significant effect on the physical properties
of the fluid, we write Q¯ h(T

"
®T

!
), with the understanding that the heat or mass

transfer coefficient h, and its dimensionless version expressed by the Nusselt number
Nu¯ h}4πak¯Q}4πak(T

"
®T

!
), depend upon the structure and intensity of the

ambient flow, as well as on the value of the Pe! clet number Pe.
The dependencies of Nu on the Pe! clet number and on the Reynolds number

Re¯ aU}ν, where ν is the kinematic viscosity of the fluid, have been studied on many
occasions using the method of matched asymptotic expansions, for several types of
flows (Acrivos & Taylor 1962; Brenner 1963; Frankel & Acrivos 1968; Clift, Grace &
Weber 1978; Acrivos 1980; Brunn 1984). Batchelor (1979) extended and unified prior
analyses in the limit of small and large values of the Pe! clet number. It is now well-
established that, for small values and to leading order with respect to Pe, Nu is
independent of Re but depends only on the structure of the incident flow.

The more general problem of unsteady transport from a particle that is suspended
in a steady or unsteady incident flow has received much less attention, as will be
discussed in the following sections. In this case, the distribution of the scalar field
around the particle is governed by the unsteady convection–diffusion equation

¥T
¥t

¡[(u(t)T )¯D~#T (1.1)

with boundary conditions T¯T
"

on the particle surface, and T¯T
!

far from the
particle. The rate of scalar transport from the particle surface is a time-dependent
function Q(t) whose instantaneous value is affected not only by the current structure of
the flow, but also by the history of the fluid and particle motion.

Close to the particle surface, for r! r
c
, where r is the distance from a designated

particle centre and r
c
is a certain critical distance, convective effects are secondary and

the distribution of the temperature or concentration is governed by the unsteady
diffusion equation, subject to boundary conditions to be discussed in the following
paragraphs. Far from the particle surface, for r" r

c
, both convective and diffusive

effects are significant, and the distribution of the temperature or concentration is
governed by the full form of the unsteady convection–diffusion equation (1.1). A
schematic illustration of these two regimes is depicted in figure 1.

If the velocity of translation of the particle is roughly equal to the velocity of the
incident flow evaluated at the designated particle centre, with an error that is
comparable to the magnitude of the local velocity gradient γ multiplied by the particle
size a, then r

c
}aEPe−"/# where Pe¯γa#}D. But if the particle velocity differs from the

velocity of the fluid by an amount that is larger than γa, then r
c
}aEPe−" where

Pe¯ aU}D and U is the velocity of the fluid relative to that of the particle. When Pe is
small, the distance r

c
is much larger than the characteristic particle size a, and the

distribution of the scalar in the outer regime is insensitive to the precise particle shape.
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F 1. Unsteady transport from a suspended particle in a generally unsteady ambient flow at small
Pe! clet numbers. Schematic illustration of the inner and outer transport regimes where convective
transport is, respectively, negligible or significant.

To describe the temperature or concentration field in the outer regime, we work in
a frame of reference in which the particle appears to be stationary, and define the rate
of heat or mass transport q(t) across a spherical surface that is centred at the particle
and whose radius R is comparable to r

c
. Then, following Batchelor (1979, p. 374) and

previous authors, we approximate the actual fluid velocity u with the velocity of the
unperturbed incident flow u¢(t). This approximation requires that the disturbance flow
has decayed, the distortion of the velocity profile due to the establishment of a wake
has virtually disappeared, and any steady streaming motion due to an oscillatory flow
has ceased at the radial distance r

c
. Hydrodynamic instabilities aside, these conditions

will be met independently of the value of the Reynolds number, as long as the Pe! clet
number is sufficiently small.

To leading order with respect to Pe, the distribution of the scalar in the outer regime
may then be expressed in the form

TOuter(x, t ;x
!
)¯α& t

ts

q(t
!
)GCD(x, t ;x

!
, t

!
) dt

!
T

!
, (1.2)

where x
!

is the designated particle centre which, in the aforementioned frame of
reference is stationary, t

s
is the time at which scalar transport has begun, α¯D}k, and

the subscript s stands for start. For heat transport, α¯ 1}ρc
p
, and for mass transport

α¯ 1. The kernel GCD, with dimensions of inverse cubed length, is the Green’s function
of the convection–diffusion equation, defined as the solution of the equation

¥GCD

¥t
¡[(u¢(t)GCD)¯D~#GCDδ(x®x

!
) δ(y®y

!
) δ(z®z

!
) δ(t®t

!
), (1.3)

where δ is the one-dimensional delta function. Furthermore, GCD is required to decay
as x moves far away from x

!
.

To compute the rate of transport from the particle surface, we work in two steps.
First, we take the limit of (1.2) as the field point x tends to the particle centre x

!
and

derive the singular asymptotic expansion

TOuter(t)Uα q(t)
1

4πD rx®x
!
r
T

!
®∆T(t)… , (1.4)

where GD-S¯ 1}(4πrx®x
!
r) is the Green’s function of the steady diffusion equation

that satisfies the equation ~#GD-Sδ(x®x
!
) δ(y®y

!
) δ(z®z

!
)¯ 0. As x tends to x

!
, the

terms represented by the dots tend to vanish. The first term on the right-hand side of
(1.4) describes the quasi-steady scalar field that prevails in the absence of convection.
The instantaneous value of the quantity ∆T(t) depends upon the variation of q(t) over
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all previous times up to the present time, and it is generally a function of the direction
of x®x

!
. If the instantaneous velocity of the incident flow at the designated particle

centre x
!
vanishes, then ∆T(t) is independent of the direction of x®x

!
. This can be seen

by expanding u¢(t) in a Taylor series about the point x
!
, reraining the leading-order

term, and then inspecting the functional form of the Green’s function for uniform and
linear flow discussed by Batchelor (1979).

Secondly, we consider the distribution of the scalar field in the inner diffusive regime,
for r! r

c
, and use the general principles of matched asymptotic expansions, to find that

the boundary conditions accompanying the governing unsteady diffusion equation are
(a) T¯T

"
at the particle surface, and (b) T¯T

!
®∆T(t) at a radial distance R that is

comparable to r
c
, as shown in figure 1. Integrating the unsteady diffusion equation

from the initial time t
s
up to a certain time t allows us to express the rate of transport

from the particle surface Q(t) in terms of ∆T(t). A relation between the functions q(t)
and ∆T(t) emerges by identifying q(t) with the rate of transport across a spherical
surface of radius R, and this, in conjunction with (1.4) completes the mathematical
formulation. Obtaining quantitative results, however, requires a more precise definition
for the radius R.

When the distribution of the temperature or concentration field has reached a steady
state, the absence of heat or mass generation or dissipation requires that q(t)¯Q(t).
In this case, R may be consistently shifted to infinity to a leading-order approximation,
and this permits an analytical or numerical computation (Batchelor 1979). There are
at least two additional circumstances where a precise definition for R is not necessary
in order to make further progress. The first one concerns the late stages of transport
from a particle that has been introduced suddenly into a steady flow, near the steady
state, to be discussed in §2. The second one concerns the mean rate of transport from
a particle in a time-period flow, to be discussed in §3.

In §§2 and 3, we review and discuss the mathematical formulation for the
aforementioned two problems, and in §§4 and 5 we derive analytical and numerical
results for uniform incident flow and for a family of flows with a linear variation in
space, with particular attention to simple shear flow and purely straining two-
dimensional and axisymmetric flows. The derivation of quantitative results hinges
upon our ability to compute the Green’s function of the convection–diffusion for a
generally unsteady flow with velocity field given by u¢(t)¯A(t)[xU(t), where A(t)
is the uniform time-dependent velocity gradient and U(t) is a time-dependent velocity;
this is discussed in the Appendix. In §6, we summarize the results, compare the present
method of analysis with analogous methods of low-Reynolds-number hydrodynamics,
and discuss the applicability to the theory to the problem of heat or mass transport
from a small patch on an insulated or isothermal wall considered by Pedley (1972,
1976).

2. Late stages of transport in a steady flow

We consider heat or mass transport from a particle which, at time t
s
, is immersed in

an infinite fluid, and refer to a frame of reference in which the particle appears to be
stationary and the incident flow is steady. The behaviour of the rates of transport from
the particle surface and from the boundary of the inner regime, Q(t) and q(t), are
illustrated schematically in figure 2.

Konopliv & Sparrow (1971, 1972), Choudhury & Drake (1971), Abramzon & Elata
(1984), Feng & Michaelides (1996), and others (see Clift et al. 1978) studied the
asymptotic behaviour of the temperature of concentration field from a spherical
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q

Q

0 t–ts

F 2. Behaviour of the rates of transport from the particle surface, Q(t), and the rate of transport
across the boundary that demarkates the inner diffusive regime from the outer convective–diffusive
regime, q(t), for a particle that is immersed suddenly in a steady flow.

particle immersed in a uniform flow at short and long elapsed times, for small and large
values of the Pe! clet number. Polyanin (1984, p. 171) pointed out that the results for
long times and small Pe! clet numbers are also applicable to arbitrary particle shapes.
We are interested in evaluating the rate of transport from a particle of arbitrary shape
immersed in a general, not necessarily uniform, incident flow.

A scaling analysis shows that when t®t
s
( r#

c
}DE (a}U )Pe−" for uniform flow or

t®t
s
( r#

c
}DE 1}γ for linear flow, the scalar field in the inner regime develops in a

quasi-steady or parametric manner. Thus, the rate of heat or mass transport into the
outer regime may be approximated by the instantaneous rate of transport from the
particle surface, that is, q(t)EQ(t). Following Batchelor (1979), we find that, accurate
to leading order with respect to the Pe! clet number, the rate of transport from the
particle surface is given by

Q(t)¯ h
!
(T

"
®T

!
©∆T(t)ª), (2.1)

where the angle brackets designate the average value of ∆T(t) defined in (1.4) over all
orientations of the vector x®x

!
. The spatial fluctuations of the quantity ∆T(t) with

respect to x®x
!
around its mean value give rise to a diffusive scalar field that does not

contribute to the net rate of transport. Equation (2.1) may be rewritten in terms of the
relative increase of the rate of transport due to the flow as

Q(t)®Q
!

Q
!

¯
©∆T(t)ª
T
"
®T

!

¯Nu
!

4πak©∆T(t)ª
Q

!

, (2.2)

where Q
!
is the purely diffusive steady rate of transport that is established at long times

when the particle is introduced and remains stationary in a quiescent fluid. To compute
the quantity ©∆T(t)ª, we work in two stages.

First, we note that, because the flow is steady, the arguments t and t
!
of the Green’s

function GCD defined in (1.3) combine to form their difference, and (1.2) takes the form

TOuter(x, t ;x
!
)¯α& t−ts

!

q(t®tW )GCD(x, tW ;x
!
) dtWT

!
, (2.3)

where tW ¯ t®t
!
. As long as t®t

s
( r#

c
}D, it is consistent to replace q(t) with its

asymptotic value q(¢)¯Q(¢). The results of the following two sections will show
that this approximation introduces a relative error that is an algebraically or
exponentially decaying function of t®t

s
. A rigorous justification for this approximation
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can be made by working with the Laplace-transformed variables as discussed, for
example, by Polyanin (1984, p. 171). Furthermore, since we are interested in evaluating
the leading-order effect in the Pe! clet number, it is consistent to replace the actual value
Q(¢) with the purely diffusive value Q

!
. These simplifications transform (2.3) to

TOuter(x, t ;x
!
)¯αQ

!&
t−ts

!

GCD(x, tW ;x
!
) dtWT

!
. (2.4)

Secondly, we introduce the Green’s function of the unsteady diffusion equation GD,
which satisfies the equation

¥GD

¥t
¯D~#GDδ(x®x

!
) δ(y®y

!
) δ(z®z

!
) δ(t®t

!
) (2.5)

and vanishes at infinity, and note that the corresponding stationary Green’s function
GD-S¯ 1}(4πrx®x

!
r) is

GD-S(x ;x
!
)¯&

¢

!

GD(x, tW ;x
!
) dtW . (2.6)

Rearranging the integral on the right-hand side of (2.4), and taking into account (2.6),
we obtain

TOuter(x, t ;x
!
)¯α

Q
!

4πD rx®x
!
r

T
!
®αQ

!&
¢

!

(GD(x, tW ;x
!
)®GCD(x, tW ;x

!
)) dtW®αQ

!&
¢

t−ts

GCD(x, tW ;x
!
) dtW . (2.7)

Finally, we take the limit of (2.7) as the field point x tends to the designated particle
centre x

!
, and compare it with (1.4) to obtain

∆T(t)¯ lim
xUx

!

0αQ
!&

¢

!

[GD(x, tW ;x
!
)®GCD(x, tW ;x

!
)] dtW1

αQ
!&

¢

t−ts

GCD(x
!
, tW ;x

!
) dtW . (2.8)

Unless the incident velocity vanishes at x
!
, the limit on the right-hand side of (2.8) may

not be transferred into the integral. Substituting (2.8) into (2.2), we find

Q(t)®Q
!

Q
!

¯Nu
!
F(t), (2.9)

where F(t)¯
4πak©∆T(t)ª

Q
!

¯F(¢)4πaD&
¢

t−ts

GCD(x
!
, tW ;x

!
) dtW (2.10)

and F(¢)¯ 4πaD lim
xUx

!

-&
¢

!

0GD(x, tW ;x
!
)®GCD(x, tW ;x

!
)1dtW.

¯ lim
xUx

!

- a

rx®x
!
r
®4πaDGCD-S(x ;x

!
). . (2.11)

The magnitude of the dimensionless constant F(¢), corresponding to the limit of
steady transport, vanishes as the Pe! clet number tends to zero, but its precise leading-
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order dependence on Pe depends on the structure of the incident flow. The computation
of this constant for uniform flow and for a family of flows varying linearly in space was
discussed by Batchelor (1979) in terms of the integral on the right-hand side of (2.11).

Choudhury & Drake (1971), Polyanin (1984), and Feng & Michaelides (1996)
computed the function F(t) for uniform flow past a spherical or an arbitrary particle
using the method of the Laplace transform. In §§4 and 5, we shall re-derive the results
using the present theory and, in addition, we shall compute the asymptotic form of the
function F(t) for a family of linear flows in terms of the second integral on the right-
hand side of (2.10). The results will demonstrate the importance of the structure of the
flow for the manner in which the rate of transport approaches its asymptotic value near
the steady state.

3. Transport in a periodic flow

Fluctuating flows are often used in chemical engineering processes of heat and mass
transfer involving two-phase and particulate flow. The applied engineering literature
contains a large number of relevant experimental investigations and accompanying
empirical correlations, reviewed by Clift et al. (1978, pp. 312, 314). Owing to the
intricacies of the mathematical problem, a comprehensive theory has not been
established.

Batchelor (1980) considered the rate of transport from a spherical rigid particle that
is suspended in a fluctuating turbulent flow at large values of the Pe! clet number, under
the assumption that, in a frame of reference in which the particle is stationary, the flow
occurs at low Reynolds numbers. We are interested in the diametrically opposite limit
of transport at small Pe! clet numbers where the Reynolds number does not enter the
analysis to a leading-order approximation.

We begin developing the theory by taking the time average of the unsteady diffusion
equation over one period, indicated by an overbar, and note that the time-averaged
temperature or concentration field T{ in the inner regime satisfies the steady diffusion
equation and is thus amenable to the theory of Batchelor (1979). Furthermore, we
expect that the quantity ∆T(t) defined in (1.4) will be a periodic function of time, and
may thus be expressed as a Fourier series. Taking the average of both sides of (1.4) over
one period, we find

T{ OuterUα qa
1

4πDrx®x
!
r
T

!
®∆T… . (3.1)

Since neither heat nor mass accumulates within the fluid over a period, the net rate of
transport across any surface enclosing the particle over one period is constant, and we
may put qa ¯Q{ . Noting that the fluctuating component of ©∆Tª does not contribute
to the net rate of transport from the particle, and following the arguments of Batchelor
(1979), we write

Q{ ¯ h
!
(T

"
®T

!
©∆Tª) (3.2)

which may be rearranged to give

Q{ ®Q
!

Q
!

¯
©∆Tª
T
"
®T

!

¯Nu
!

4πak©∆Tª
Q

!

. (3.3)

To compute the mean value of the quantity ∆T(t) over one period, we consider the
scalar distribution in the outer regime given by (1.2), and replace the instantaneous rate
of transport q(t) within the integral with the purely diffusive rate of transport Q

!
. This
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substitution is permissible as long as we confine our attention to the leading-order
effect with respect to the Pe! clet number. We may now proceed in two seemingly
different but essentially equivalent ways.

In the first method, we recast (1.2) with q(t)¯Q
!

into the form

TOuter(x, t ;x
!
)¯αQ

!

1

4πDrx®x
!
r

T
!
®αQ

!&
t

−¢

(GD(x, t®t
!
;x

!
)®GCD(x, t ;x

!
, t

!
)) dt

!
, (3.4)

where GD was defined in (2.5). Considering the integrand on the right-hand side, we
note that the limit of x tends to x

!
and t tends to t

!
, GD and GCD exhibit identical

singular behaviour. As a result, the second integral tends to obtain a finite value that
generally depends upon the direction of x®x

!
. If the velocity happens to vanish at the

location of x
!
, the limiting value of the integral is independent of the direction of x®x

!
(e.g. Batchelor 1979). We thus obtain

∆T(t)¯ lim
xUx

!

0αQ
!&

t

−¢

(GD(x, t®t
!
;x

!
)®GCD(x, t ;x

!
, t

!
)) dt

!1 , (3.5)

where, in general, the limit may not be transferred into the integral.
Another method of computing the quantity ∆T involves introducing the Green’s

function of the unsteady convection–diffusion equation, and the Green’s function of
the steady convection–diffusion equation, computed by freezing the velocity at its
instantaneous value at the current time t, denoted respectively by GCD

(t)
and GCD-S

(t)
. These

are related by an equation that is analogous to (2.6). We then recast (1.2) with
q(t)¯Q

!
into the form

TOuter(x, t ;x
!
)¯αQ

!
GCD-S

(t)
(x ;x

!
)

T
!
®αQ

!&
t

−¢

(GCD
(t)

(x, t®t
!
;x

!
)®GCD(x, t ;x

!
, t

!
)) dt

!
. (3.6)

As x tends to x
!
, the limiting value of the first term on the right-hand side may depend

upon the direction of x®x
!
, but the limiting value of the integral is independent of the

direction of x®x
!
. We thus obtain

∆T(t)¯αQ
!
C(t)αQ

!&
t

−¢

(GCD
(t)

(x
!
, t®t

!
;x

!
)®GCD(x

!
, t ;x

!
, t

!
)) dt

!
, (3.7)

where the value of the dimensional coefficient C(t) generally depends on the direction
of x®x

!
, and may be deduced from the analysis of steady transport in a steady flow.

Substituting (3.5) and (3.7) into (3.3) we finally obtain

Q{ ®Q
!

Q
!

¯Nu
!
Φ, (3.8)

where the function Φ is given by the two equivalent expressions

Φ(t)¯ 4πaD-lim
xUx

!

0 & t

−¢

[GD(x, t®t
!
;x

!
)®GCD(x, t ;x

!
, t)] dt

!1. (3.9)

and

Φ(t)¯ 4πaD©C(t)ª4πaD& t

−¢

(GCD
(t)

(x
!
, t®t

!
;x

!
)®GCD(x

!
, t ;x

!
, t

!
)) dt

!
, (3.10)
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corresponding to (3.5) and (3.7). Both of these expressions will have a use in our
subsequent discussion.

Since the Reynolds number does not enter the analysis to a leading-order
approximation, the net rate of transport in an oscillatory flow with frequency ω
depends upon the values of (a) a properly defined Pe! clet number, and (b) the frequency
parameter λ¯ωa}U. This is consistent with the well-known result that the rate of
transport in a steady flow, which is recovered in the limit as λ tends to vanish, is
independent of the Reynolds number to leading order in Pe.

In the following two sections, we shall compute the periodic function Φ(t) and its
mean value over one period, for uniform oscillatory flow and for a family of oscillatory
flows with linear variation in space, and shall discuss their dependence upon the
frequency of the oscillation. In the limit of small frequencies, we shall recover the
results for steady flow derived by previous authors.

4. Transport in uniform flow

We proceed to derive specific results for a particle that translates in a quiescent or
a uniformly translating medium. In a frame of reference in which the particle appears
to be stationary, the velocity of the fluid U(t) is assumed to be uniform but not
necessarily constant in time.

4.1. Green’s functions of steady flow

The Green’s functions for steady flow are well known. Assuming that the velocity of
translation U is time-independent, and using simplified forms of the general expressions
for unsteady uniform or linear flows given in the Appendix, we obtain

GCD(x, tW ;x
!
)¯

1

(4πDtW )$/#
exp 0®rx®x

!
®UtW r#

4DtW 1 , (4.1)

where tW ¯ t®t
!
. Integrating (4.1) with respect to t

!
from ®¢ up to the current time

t, we derive the stationary Green’s function with pole at x
!
:

GCD-S(x ;x
!
)¯

1

(4πD)$/#&
¢

!

1

tW $/#
exp 0®rx®x

!
®UtW r#

4DtW 1dtW

¯
1

4πDrx®x
!
r
exp 0®rx®x

!
r rU r

2D
(1®cos θ)1 , (4.2)

where θ is the angle subtended between the vectors x®x
!

and U. Expanding the
exponential term on the right-hand side in a Taylor series for small values of its
argument, we obtain the asymptotic expansion

GCD-S(x ;x
!
)E

1

4πDrx®x
!
r
®

rU r
8πD#

(1®cos θ)…. (4.3)

As the observation point x tends to the pole of the singularity x
!
, the terms represented

by the dots tend to vanish.

4.2. Late stages of transport in steady flow

Substituting (4.3) into (2.11), we obtain the well-known result

F(¢)¯ "

#
Pe, (4.4)
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where Pe¯ arU r}D. Substituting (4.1) into (2.9) and (2.10), we obtain the less-known
result

Q(t)®Q
!

Q
!

¯Nu
!
Pe

1

2 01
1

2π"/#
&

¢

ξ

e−η

η$/#
dη1 , (4.5)

where ξ¯ rU r#(t®t
s
)}4D. Evaluating the integral yields

Q(t)®Q
!

Q
!

¯Nu
!
Pe

1

2 01
e−ξ

(πξ)"/#
®erfc (ξ"/#)1 , (4.6)

which is consistent with equation (32) of Choudhury & Drake (1971) for a spherical
particle, derived by the method of the Laplace transform. This agreement serves to
confirm the consistency of the present approach and the accuracy of the new results
derived in §5 for a family of linear flows.

We have thus found that the rate of transport approaches its steady value at long
times in an exponential manner. In the absence of fluid motion, rU r¯ 0, we obtain the
well-known result

Q(t)®Q
!

Q
!

¯Nu
!

a

(πD(t®t
s
))"/#

(4.7)

corresponding to the limit of pure condition or diffusion. Contrasting the exponential
decay shown in (4.6) with the inverse-square-root decay shown in (4.7) demonstrates
the significant influence of the fluid motion.

4.3. Uniform oscillatory flow

We proceed to consider transport oscillatory flow with angular frequency ω, with the
velocity field given by U(t)¯WV sin (ωtφ), where W is the mean value, V is the
constant amplitude, and φ is the phase shift. The corresponding Green’s function is
readily found from (A9) of the Appendix to be

GCD(x, tW ;x
!
)¯

1

(4πDtW )$/#

¬exp 0® 1

4DtW )x®x
!
®WtWV

cos (ωtφ)®cos (ωt
!
φ)

ω )#1 , (4.8)

where tW ¯ t®t
!
. The quantity ∆T(t) computed from (3.7) is given by

∆T¯αQ
!
C(t)αQ

!

ω"/#

(4πD)$/#&
ωt

−¢
(exp 0® tW

4D
rWV sin (ωtφ)r#1

®exp 0® tW
4D )W®V

cos (ωtφ)®cos (ωt
!
φ)

ωtW )#1* dωt
!

(ωtW )$/#
. (4.9)

Using (4.3), we find

C(t)¯
1®cos θ

8πD#

rWV sin (ωtφ)r. (4.10)

The function Φ(t) then follows from the right-hand side of (3.10) as

Φ(t)¯
a

2D
rWV sin (ωtφ)r

aω"/#

(4πD)"/#&
ωt

−¢
(exp 0® tW

4D
rWV sin (ωtφ)r#1

®exp 0® tW
4D )W®V

cos (ωtφ)®cos (ωt
!
φ)

ωtW )#1* dωt
!

(ωtW )$/#
. (4.11)
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F 3. Transport in an oscillatory flow. Graphs of the periodic function Y(ωt, δ) whose mean value
expresses the enhancement of the rate of scalar transport, for several values of the frequency
parameter δ, and phase shift φ¯π}2. The dashed lines represent the limit of quasi-steady transport
corresponding to δ¯ 0, expressed by the function rcos (ωt)r. (a) Uniform oscillatory flow with δ¯
0.05, 0.10, 0.20, 0.40, 0.60, 1.4, 2.5, 5.0, 8.0 ; (b) simple shear flow with δ¯ 0.05, 0.10, 0.20, 0.40,
0.60, 0.80, 1.0, 1.4, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0 ; (c) two-dimensional extensional flow with
δ¯ 0.20, 0.40, 0.60, 0.80, 1.0, 1.4, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0 ; (d) axisymmetric extensional
flow for the same values of δ as in (b).

The first term on the right-hand side describes the limit of quasi-steady transport.
Let us assume, for simplicity, that the mean velocity vanishes, that is, rW r¯ 0. We

introduce the Pe! clet number Pe¯ arV r}D, and define the frequency parameter
δ¯λ}Pe¯ωD}rV r# where λ¯ aω}rV r is a purely hydrodynamic frequency parameter.
In this case (4.10) can be placed in the form

Φ(t)¯ "

#
PeY(ωt, δ), (4.12)

where

Y(ωt, δ)¯ rsin (ωtφ)r
δ"/#

π"/#
&

ωt

−¢
(exp 9®ωtW

4δ
sin# (ωtφ):

®exp 0®ωtW
4δ 9

cos (ωtφ)®cos (ωt
!
φ)

ωtW :#1* dωt
!

(ωtW )$/#
, (4.13)

and tW ¯ t®t
!
.

In figure 3(a), we plot the dimensionless function Y(ωt, δ) with respect to ωt over one
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F 4. The mean value of the function Y(ωt, δ) over one period, expressing the effective
enhancement in the rate of scalar transport due to an oscillatory flow, as a function of the frequency
parameter δ defined in table 1. Solid line is for uniform oscillatory flow, short-dashed line for simple
shear flow, longer-dashed line for two-dimensional extensional flow, and the longest-dashed line is for
axisymmetric extensional flow.

period for several values of the dimensionless frequency δ, and for φ¯π}2
corresponding to U(t)¯V cos (ωt). As δ tends to vanish, Y(ωt, δ) behaves like rcos (ωt)r,
plotted with the dashed line, corresponding to quasi-steady transport. As δ is increased,
the range of variation of Y is reduced significantly: the oscillatory motion effectively
smooths out the gradients of the transported scalar over one period, and enhances the
transport rate even when the instantaneous shear rate passes through its null point.

In figure 4, we plot with a solid line the mean value of Y(ωt, δ) over one period, as a
function of δ, normalized by the quasi-steady value corresponding to δ¯ 0, and obtain
a monotonically decaying curve, which demonstrates that the oscillatory motion has a
strong influence on the effective rate of transport. A flow with δ¯ 0.50 reduces the
mean rate of transport by a factor of nearly 2. In physical terms, the oscillatory flow
homogenizes the scalar field and thereby reduces the magnitude of its effective gradient
owing to mixing.

Unfortunately, a comparison between the predictions of these results with
experimental observations, such as those by Gibert & Angelino (1973), has not been
possible. The experiments are typically conducted at high Pe! clet numbers, and the
values of the physical parameters are not well documented.

5. Transport in linear flows

We turn next to considering transport from a neutrally buoyant particle that is
convected with the fluid. In a frame of reference in which the particle appears to be
stationary, the ambient velocity field is given by u¢(t)¯A(t)[(x®x

!
), where x

!
is the

designated particle centre.

5.1. Steady transport in steady flows

To establish a point of reference for the forthcoming results, we briefly discuss certain
well-known results for steady transport in a steady flow. Leaving aside the case of
purely rotational flow – which has no effect on the rate of transport to leading order
in the Pe! clet number for an arbitrary particle, and to all orders in the Pe! clet number
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for a spherical particle – we adopt a scaling introduced by Batchelor (1979), and
express the asymptotic value of the dimensionless function F(t) at large times, defined
in (2.11) as

F(¢)¯ a
(E :E)"/%

(4πD)"/#
χ, (5.1)

where E is the rate-of-deformation tensor, and χ is a dimensionless constant. This
equation is essentially a definition for χ. Using the expression for the Green’s function
given in (A9) of the Appendix, we find that, for an incompressible fluid,

χ¯
1

(E :E )"/%&
t

−¢
0 1

tW $/#
®

D$/#

β"/#
1dt

!
, (5.2)

where tW ¯ t®t
!
and β is defined in (A11). An approximate value of χ can be obtained

on the basis of (A19). The result is

χE
1

12&
¢

!

p"/#

1 "

"#
p#

dp¯ 3−"/%
π

2
¯ 1.194, (5.3)

accurate to the digits shown, independently of the nature of the flow, as long as it is
not a purely rotational flow (Gradshteyn & Ryzhik 1980, p. 369; Batchelor 1979,
p. 381).

5.2. Late stages of transport in steady flow

To derive the functional form of the rate of transport from a particle that is suddenly
immersed into the fluid near the steady state, we combine (2.10) and (2.11) with the
expression for the Green’s function gives in (A9) and find

Q(t)®Q
!

Q
!

¯Nu
! 0F(¢)

aD

(4π)"/#&
¢

t−ts

dtW
β"/#
1 . (5.4)

5.3. Mean rate of transport in oscillatory flow

The dimensionless function Φ(t), evaluated from (3.9), is given by

Φ(t)¯
a

(4πD)"/#&
t

−¢
0 1

tW $/#
®

D$/#

β"/#
1dt

!
. (5.5)

In the following subsections, we shall evaluate the integrals on the right-hand sides
of (5.4) and (5.5) for simple shear flow and purely straining two-dimensional or
axisymmetric flow.

5.4. Transport in steady simple shear flow

Consider steady simple shear flow along the x-axis, varying along the y-axis. The
unperturbed incident velocity field is given by u¢ ¯ (γ(y®y

!
), 0, 0), where γ is a

constant shear rate. Solving equation (A4) of the Appendix for B, we find that it is
equal to the identity matrix except that B

xy
¯®γtW . Using (A7) and (A10) we then

obtain

J¯DtW

A

B

®"

#
γtW

1"

$
γ#tW #

0

1

®"

#
γtW

0

0

0

1

C

D

, (5.6)

from which it follows that
β¯D$tW $(1 "

"#
γ#tW #). (5.7)
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Equation (5.2) with E :E¯γ#}2 then yields

χ¯ 2"/%&
¢

!

01®
1

(1 "

"#
p#)"/#1

dp

p$/#
¯ 1.083, (5.8)

accurate to the digits shown, in agreement with the results of Frankel & Acrivos (1968).
It is interesting to note that this value is lower than the general approximate value
predicted from (5.3) by only 9%. Equation (5.1) takes the specific form

F(¢)¯ 0.257Pe"/#, (5.9)
where Pe¯γa#}D.

Substituting the expressions given in (5.7) and (5.9) into (5.4), and evaluating the
asymptotic form of the integral at large times, we find

Q(t)®Q
!

Q
!

¯Nu
!
Pe"/# 00.257

2

(3π)"/#γ$/#(t®t
s
)$/#

…1 , (5.10)

where the dots represent terms with faster decay. The algebraic inverse 3}2 decay of the
transient component may be contrasted with the exponential decay corresponding to
uniform flow shown in (4.6). The physical implication of this difference will be
discussed in the concluding section.

5.5. Oscillatory simple shear flow

We assume now that the shear rate oscillates harmonically in time with angular
frequency ω, so that u

x
(t)¯γa sin (ωtφ) (y®y

!
), u

y
¯ 0, u

z
¯ 0, where γa is a constant

amplitude, and φ is the phase shift. This flow occurs, for example, when a small
neutrally buoyant particle is suspended in a fluid between two parallel plates, where
one or both of the plates oscillate parallel to themselves in a periodic fashion (Leighton
1989).

Integrating (A4) we find that B(t) is equal to the identity matrix except that

B
xy

(t)¯ (cos (ωtφ)®cos (ωt
!
φ))}δ, (5.11)

where δ¯ω}γa is a dimensionless frequency parameter. The modified diffusivity is
readily found from (A7) to be

S(t)¯D

A

B

cos (ωtφ)®cos (ωt
!
φ)

δ

1
[cos (ωtφ)®cos (ωt

!
φ)]#

δ#

0

1

cos (ωtφ)®cos (ωt
!
φ)

δ

0

0

0

1

C

D

.
(5.12)

Straightforward integration as dictated by (A10) gives

J
xx

¯DtW
D

ωδ#
²"
#
ωtW"

%
[sin (2ωt2φ)®sin (2ωt

!
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¯
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J
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¯ J
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¯DtW , J
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¯ J
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¯ J
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¯ J
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¯ 0.
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(5.13)
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In the limit as t tends to t
!
, these expressions reduce to those shown in (5.6) with

γ¯γa sin (ωt
!
φ).

It now follows readily that

β3Det (J)¯D$tW $ζ(ωt,ωt
!
, δ), (5.14)

where the dimensionless function ζ is given by

ζ(ωt,ωt
!
, δ)¯ 1

1

δ#

1

2

91
sin2(ωtφ)®sin2(ωt

!
φ)

2ω(t®t
!
)

®20sin(ωtφ)®sin(ωt
!
φ)

ω(t®t
!
) 1#: . (5.15)

In the limit as t tends to t
!
, we obtain the asymptotic expression

ζE 1 "

"#
sin# (ωtφ)γa #tW # &

#%
δ sin [2(ωtφ)]γa $tW $. (5.16)

To explore the asymptotic behaviour at low frequencies we take the limit of the right-
hand side of (5.15) as δ tends to vanish, while γa t and γa t

!
are held constant, and recover

(5.16).
Substituting (5.14) into (5.5), we find that the dimensionless function Φ(t) is given by

Φ(t)¯
Pe"/#

2"/%(4π)"/#
χY(ωt, δ), (5.17)

where Pe¯γa a#}D. The value of the dimensionless constant χ is given in (5.8), and the
dimensionless function Y is defined as

Y(ωt, δ)¯
2"/%

χ
δ"/#&

¢

!

01®
1

[ζ(ωt,ωt®p, δ)]"/#1
dp

p$/#
. (5.18)

In figure 3(b), we plot Y(ωt, δ) with respect to ωt over one period for several values
of the dimensionless frequency δ, for φ¯π}2 corresponding to γ¯γa cos (ωt). As δ
tends to vanish, Y(ωt, δ) behaves like rcos (ωt)r"/#, which is represented by the dashed
line, corresponding to the limit of quasi-steady transport. As δ is increased, the range
of variation of Y is reduced, which shows that the oscillatory motion effectively
smooths out the gradients of the scalar over each period, and enhances the transport
rate even when the instantaneous shear rate passes through its null point. Furthermore,
as δ is increased, an increasingly larger phase shift is established between the shear rate
and the function Y(ωt, δ). But since Y(ωt, δ) is not proportional to the local rate of
transport, the significance of these behaviours is unclear.

In figure 4, we plot with a short dashed line the mean value of Y(ωt, δ) over one
period as a function of δ, normalized by its value at steady state corresponding to
δ¯ 0, and obtain a monotonically decaying curve. The general features of the graph
and the physical interpretation of its behaviour are similar to those discussed in the
preceding section for uniform flow.

5.6. Purely straining flows

Next, we consider transport in a purely straining flow. The velocity gradient tensor A

is symmetric with vanishing trace, and the rate-of-deformation tensor E is equal to A.
Considering first transport in a steady flow, we use (A7) and (A10) and find

J(tW )¯ "

#
DE−"[[I®exp (®2EtW )] (5.19)



126 C. Pozrikidis

from which it follows that

β¯
D$

8

Det [I®exp (®2EtW )]
Det (E )

. (5.20)

It is convenient to refer to the principal axes of E in which the tensor J is diagonal
with elements given by

J
ii
(tW )¯ DtW

1®exp (®2E
ii
tW )

2E
ii
tW

, (5.21)

where summation is not implied over i. The determinant of J follows readily as

β3Det (J )¯D$tW $
sinh (E

""
tW ) sinh (E

##
tW ) sinh (E

$$
tW )

(E
""

tW ) (E
##

tW ) (E
$$

tW )
, (5.22)

which is consistent with the asymptotic expansion for short times shown in (A19).
Two-dimensional extensional flow corresponds to E

""
¯γ, E

##
¯®γ, E

$$
¯ 0,

where γ is the strain rate. Taking the limit of (5.22) as E
$$

tends to vanish, we find

β¯D$tW
cosh (2γtW )®1

2γ#

. (5.23)

Axisymmetric extension flow corresponds to E
""

¯γ, E
##

¯γ, E
$$

¯®2γ. Equation
(5.22) gives

β¯
D$

8γ$

(sinh (4γtW )®2 sinh (2γtW )). (5.24)

Substituting the right-hand side of (5.22) into (5.2), we find

χ¯
1

(E :E )"/%&
¢

!

01®9 E
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E
##

E
$$

tW $
sinh (E

""
tW ) sinh (E

##
tW ) sinh (E

$$
tW ):

"/#1 dtW
tW $/#

. (5.25)

In both the two-dimensional and axisymmetric extensional flow cases, the numerical
evaluation of the integral in (5.25) gives χ¯ 1.28 (Batchelor 1979), which is predicted
with good accuracy by the approximate form shown in (5.3). Using (5.1) we then
obtain

F(¢)¯ 1±36Pe"/#, F(¢)¯ 2.00Pe"/# (5.26)

respectively for two-dimensional and axisymmetric flow, where Pe¯γa#}D. Note that
the values of the coefficients on the right-hand sides are significantly higher than that
for simple shear flow shown in (5.9).

5.7. Late stages of transport in steady purely straining flows

Substituting the expressions given in (5.23), (5.24), and (5.26) into (5.4), and evaluating
the integral at large times we find that, for two-dimensional purely straining flow,

Q(t)®Q
!

Q
!

¯Nu
!
Pe"/#(1±36erfc (γ(t®t

s
)"/#)…) (5.27)

and for axisymmetric purely straining flow,

Q(t)®Q
!

Q
!

¯Nu
!
Pe"/#02.00

1

π"/#
exp (®2γ(t®t

s
))…1 . (5.28)

In both cases, we obtain an exponential approach to the steady state.
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5.8. Transport in oscillatory purely straining flows

In the final case study, we consider oscillatory straining flow with the time-dependent
velocity gradient tensor A(t)¯γa M sin (ωtφ), where γa is the amplitude of the rate of
strain, M is a symmetric dimensionless matrix with vanishing trace, ω is the angular
frequency of the oscillations, and φ is the phase shift.

Two-dimensional extensional flow corresponds to M
""

¯ 1, M
##

¯®1, M
$$

¯ 0, and
axisymmetric extensional flow corresponds to M

""
¯M

##
¯ 1, M

$$
¯®2. The Green’s

function of the associated convection–diffusion equation in these two cases was derived
by Krishnan & Leighton (1992) using a different method. Using the general solution
given in (A13), we find

B(t)¯ exp ²M [cos (ωtφ)®cos (ωt
!
φ)]}δ´, (5.29)

where δ¯ω}γa is a dimensionless frequency parameter. The modified diffusivity
follows from (A7) as

S(t)¯D exp ²M2 [cos (ωtφ)®cos (ωt
!
φ)]}δ´ (5.30)

and this can be integrated according to (A10) to give

J(t)¯DtW H(ωt,ωt
!
, δ), (5.31)

where the dimensionless function H is defined as

H(ωt,ωt
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ω(t®t
!
)&

ωt

ωt!

exp ²M2[cos (ωtφ)®cos (ωt
!
φ)]}δ´dωt

!
. (5.32)

The determinant of J may be expressed in the form

β¯D$tW $ζ(ωt,ωt
!
, δ) (5.33)

where ζ(ωt,ωt
!
, δ)¯Det [H(ωt,ωt

!
, δ)] is a dimensionless function. As ωt

!
tends to

ωt, ζ approaches the value of unity independently of the value of δ.
When the Cartesian axes point in the principal direction of E, the tensor H

is diagonal. In the limit as the dimensionless frequency δ tends to vanish, the diag-
onal elements of H tend to the fractions given on the right-hand side of (5.21),
and the function ζ tends to the fraction given on the right-hand side of (5.22) with
E¯γa M sin (ωt

!
φ).

Substituting (5.33) into (5.5), we find

Φ(t)¯ 0Pe

4π1
"/#

(M :M )"/%χY(ωt, δ), (5.34)

where Pe¯γa a#}D, and χ is given by (5.25) with the matrix γa M in place of E. The
dimensionless function Y is defined as

Y(ωt, δ)¯
δ"/#

χ(M :M )"/%&
¢

!

01®
1

[ζ(δ,ωt,ωt®p)]"/#1
dp

p$/#
. (5.35)

In figure 3 (c, d ), we plot the function Y(ωt, δ) with respect to ωt over one period for
φ¯π}2 corresponding to A(t)¯γa M cos (ωt), for several values of the dimensionless
frequency δ, and for two-dimensional and axisymmetric elongational flow. In both
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cases, as δ tends to vanish, Y(ωt, δ) behaves like rcos (ωt)r"/#, which is shown with a
dashed line, representing the limit of quasi-steady transport. In figure 4, we plot with
a dashed line and with a long-dashed line the corresponding mean values of Y(ωt, δ)
over one period. The general features of the graphs and their physical interpretation
are similar to those discussed previously for simple shear flow, although quantitative
differences are apparent.

6. Discussion

We used the method of matched asymptotic expansions to study the effect of a
steady or oscillatory flow on the unsteady rate of scalar transport from a suspended
particle, to leading order with respect to the Pe! clet number. A summary of definitions
and prior and new results is presented in table 1. Note that, in all cases, the
enhancement in the rate of transport is proportional to the effective particle size a.

For a particle that has been released into a steady flow, we found that the rate of
transport approaches its asymptotic value at long times in a manner that depends upon
the structure of the incident flow. For uniform and purely elongation flow we found
an exponential approach, whereas for simple shear flow consisting of an elongational
and a rotational component we found an algebraic approach with an exponent of
®3}2. These differences suggest that the rate of decay in a general incident flow with
a non-zero rotational component will be algebraic with an exponent of ®3}2. A purely
rotational flow causes the fluid parcels to move over concentric spherical surfaces
centred at the instantaneous particle centre. The corresponding rate of transport is
expected to decay in an algebraic manner with the diffusive exponent of ®1}2.

An oscillatory flow homogenizes the scalar field and thus decelerates the rate of
transport with respect to that, that would prevail in a corresponding steady flow, by a
factor that depends on a properly defined frequency parameter δ, as shown in figure 4.
The definition of δ for each type of flow is presented in table 1. The results reveal that
a simple shear flow has a stronger effect on the overall rate of transport than a purely
straining two-dimensional or axisymmetric flow, but this ranking depends on the
particular way of defining the shear rate. To leading order in the Pe! clet number, a
purely rotational oscillatory flow has no influence on either the instantaneous or the
mean rate of transport.

The theory developed provides us with an expression for the enhancement in the rate
of transport with respect to its purely diffusive value, to leading order with respect to
the Pe! clet number, in terms of the purely diffusive value. This is done by considering
the behaviour of a point source close to its pole, and identifying its effect on the
boundary condition that is imposed on the scalar distribution at the end of the inner
regime where convective effects start making a significant contribution. Similar
analyses allow us to compute the Oseen force exerted on a translating particle in terms
of the fundamental velocity field associated with an Oseenlet, that is, a point force
(Brenner 1961), and the force exerted on a vibrating particle in linearized flow in terms
of the velocity field due to an unsteady Stokeslet, that is, an oscillatory point force
(Pozrikidis 1989). The results are expressed in terms of the resistance matrices for
Stokes flow, just as the present results are expressed in terms of the purely diffusive rate
of transport.

The problem of unsteady flow past a suspended particle has many similarities with
the problem of oscillatory shear flow over a hot film on a probe that is mounted flush
on an insulated solid boundary (Pedley 1972, 1976). If the flow occurs at high Reynolds
numbers, and if the transport occurs at large Pe! clet numbers, measurements of the rate
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Velocity Steady flow Oscillatory flow
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and figures 3 and 4
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u
y
¯ 0 Pe¯γa#}D Pe¯γa a#}D

u
z
¯ 0 See also (5.10) δ¯ω}γa

See (5.17)
and figures 3 and 4

Two-dimensional straining flow
u
x
¯γ(x®x

!
) F(¢)¯ 1.36Pe"/# γ¯γa sin (ωtφ)

u
y
¯®γ(y®y

!
) Pe¯γa#}D Pe¯γa a#}D

u
z
¯ 0 See also (5.28) δ¯ω}γ

See (5.34)
and figures 3 and 4

Axisymmetric straining flow
u
x
¯γ(x®x

!
) F(¢)¯ 2.00Pe"/# γ¯γa sin (ωtφ)

u
y
¯γ(y®y

!
) Pe¯γa#}D Pe¯γa a#}D

u
z
¯®2γ(z®z

!
) See also (5.28) δ¯ δ}γa

See (5.34)
and figures 3 and 4

T 1. A summary of definitions and results.

of heat transfer can be used to deduce the magnitude of the wall shear stress. Pedley
(1972, 1976) developed a theory for computing the instantaneous rate of transport in
a general unsteady and oscillatory simple shear flow, and Kaiping (1983) carried out
numerical computations. The results of Kaiping (1983) regarding the averaged heat
flux in a reversing pulsating flow, shown in his figure 12(b), are qualitatively similar to
those shown in figure 4 of this paper, even though the transport occurs under different
conditions.

The present theory can be applied with straightforward changes in symbols and
notation to study the aforementioned problem studied by Pedley in the limit of small
Pe! clet numbers. The analysis will allow us to compute the late stages of transport from
a film that is mounted flush with the surface of a wall, subject to a step increase in its
temperature, as well as the mean rate of transport in oscillatory flow. Obtaining
quantitative results, however, requires the availability of the Green’s function for semi-
infinite flow, whose derivation and computation are elusive.

The Department of Chemical Engineering of the Imperial College and, in particular,
Professor Chris Lawrence, provided me with a hospitable environment for carrying out
parts of this research. Financial support was provided by the National Science
Foundation and the SUN Microsystems Corporation. Acknowledgment is made to
the Donors of the Petroleum Research Fund, administered by the American Chemical
Society, for partial support of this research.
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Appendix. Green’s function of the convection–diffusion equation for
unsteady uniform or linear flow

In this Appendix, we derive the Green’s function of the unsteady convection–
diffusion equation for an unsteady linear flow with velocity �(t)¯A(t)[xU(t),
representing the scalar field due to an impulsive point source. To broaden the
applicability of the results, we allow the diffusivity to vary in time and have an
anisotropic form expressed by the symmetric diffusivity tensor D(t), which is assumed
to be independent of position in the domain of flow.

The Green’s function satisfies the generalized convection–diffusion equation

¥GCD

¥t
¡[(�(t)GCD)¯D(t) : ¡¡GCDδ(x®y

!
) δ(y®y

!
) δ(z®z

!
) δ(t®t

!
), (A 1)

where δ is the one-dimensional delta function. As a first step towards computing the
solution, we introduce Lagrangian coordinates, designated with a hat, that reduce
(A1) to an equivalent linear diffusion–reaction equation. The Lagrangian coordinates
are related to the Eulerian coordinates by the transformation ¥xW

i
}¥x

j
¯B

ij
(x, t) where

B is the inverse of the deformation gradient F, B¯F−". Since the deformation
gradient associated with a linear flow is uniform, we write

xW ¯B(t)[x®c(t), (A 2)

where c(t) is a time-dependent vector to be determined as part of the solution. Using
the chain rule of differentiation, we obtain the relations

¥GCD

¥t
¯

¥GCD

¥tW
0dB

dt
[x®

dc

dt1[¡W GCD,

¡GCD¯BT(t)[¡W GCD, ¡¡GCD¯BT(t)[(¡W ¡W GCD)[B(t),

5

6

7

8

(A 3)

where tW ¯ t®t
!
, and the hat over the gradient indicates differentiation with respect to

the Lagrangian coordinates. It is understood that the partial derivative with respect
to tW is taken, keeping the Lagrangian spatial coordinates constant. Substituting (A3)
into (A1), and requiring that B and c evolve according to the ordinary differen-
tial equations

dB}dtB[A¯0 (A 4)

and dc}dt®B[U¯0, (A 5)

reduces (A1) to a linear diffusion equation with a homogeneous linear sink term forced
by the uniform rate of expansion,

¥GCD

¥tW
GCD¡[�(t)¯S(t) :¡W ¡W GCDδ(x®x

!
) δ(y®y

!
) δ(z®z

!
) δ(tW ), (A 6)

where S(t) is a time-dependent symmetric modified diffusivity tensor given by

S(t)¯B(t)[D(t)[BT(t). (A 7)

If the matrix B is orthogonal, (A 7) expresses a similarity transformation, and the
primary and modified diffusivity tensors D and S share their eigenvalues. It is worth
noting that (A4) is consistent with the general relationship ¥F

ij
}¥tW ¯F

kj
¥�

i
}¥x

k
, where

F is the deformation gradient, which is applicable to more general nonlinear flows
(Goddard 1993).
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Using the continuity equation, we place (A6) into a more compact form involving
the density ρ, which varies in time in response to the uniform time-dependent rate of
expansion of the fluid, as

¥
¥tW 0

GCD

ρ 1¯S(t) :¡W ¡W 0GCD

ρ 11

ρ
δ(x®x

!
) δ(y®y

!
) δ(z®z

!
) δ(tW ). (A 8)

The solution of (A8) is given by

GCD¯
ρ

ρ(t¯ t
!
)

1

(4π)$/#

1

β"/#
exp (®"

%
J−" : xW xW ), (A 9)

where J(t)¯& t

t!

S(τ) dτ

and β¯Det (J ) (A 11)

(Novikov 1958). The derivation of (A9) uses the identity

d

dt
²ln [Det (H )]´¯

dH

dt
: H−"

T ¯Tr 9H−"[dH

dt : , (A 12)

which is valid for any non-singular differentiable square matrix function H(t)
(Gradshteyn & Ryshik 1980, p. 1108). Equation (A4), in conjection with (A12) applied
for H¯B, confirms that, when velocity field is solenoidal, Det (B) remains equal to
unity at all times.

The solution of (A4) and (A5) with initial conditions B(t
!
)¯ I and c(t

!
)¯x

!
is

given by

B(t)¯ exp 9®& t

t!

A(τ) dτ: (A 13)

and c(t)¯x
!
& t

t!

B(τ)[U(τ) dτ. (A 14)

Steady flow

When A and U are constant, independent of time, (A13) and (A14) give

B(tW )¯ exp (®AtW ), c(tW )¯x
!
[I®exp (®AtW )][A−"[U. (A 15)

When, in addition, D(t) is isotropic with time-dependent diagonal elements equal to
D(t), the modified diffusivity computed from (A7) is given by the simpler form

S(t)¯D(t) exp (®AtW )[exp (®ATtW ), (A 16)

and the Green’s function follows readily from (A9) and (A10).
Batchelor (1979) and Foister & van de Ven (1980) presented alternative derivations

of the Green’s function for steady flow for the particular case where D is constant and
independent of time. Their analyses assume a Gaussian dependence for the Eulerian
spatial coordinates at the outset. Bowen & Stolzenbach (1992) used their results to
study the properties of the corresponding stationary Green’s function describing the
scalar field due to a permanent point source.

To study the behaviour of the Green’s function at short times, we expand the
exponential terms in (A16) in Taylor series with respect to their arguments and obtain

S(t)¯D(t) (I®2EtW(2E #Ξ[E®E[Ξ ) tW #…), (A 17)
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where E¯ "

#
(AAT ) is the rate of deformation tensor, and Ξ¯ "

#
(A®AT ) is the

vorticity tensor. When D is independent of time, we integrate (A17) according to (A
10) and obtain

J(tW )¯DtW (I®EtW"

$
(2E #Ξ[E®E[Ξ ) tW #…) (A 18)

from which it follows that, for an incompressible fluid,

β¯D$tW $(1"

'
E : EtW #…), (A 19)

where E :E¯Tr (E #), as deduced by Batchelor (1979) using a different method.
Equations (A18) and (A19) show that the rotation of the fluid around the point source
plays a secondary role during the initial stages of transport. The rotary motion simply
moves the fluid parcels over the nearly spherical iso-scalar surfaces centred at the point
source.
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